Data Availability
All processed transcriptomic data from this project are freely available for download. The datasets are provided in both JSON and CSV formats for easy integration into your analysis pipelines.
Please cite this resource if you use the data in your research. Citation Information →
Bulk RNA-seq Dataset
Differential Expression Analysis: Ga30 vs Ga15
Laser capture microdissection (LCM) based bulk RNA-seq comparing seizure-onset (P30) to pre-seizure (P15) stages.
Dataset Details
- Total Genes: 593 differentially expressed genes
- Upregulated: 560 genes (94.4%)
- Downregulated: 33 genes (5.6%)
- Criteria: padj < 0.1, |log2FC| > 0.5
- Analysis: DESeq2
File Information
- Format: JSON
- Fields: symbol, name, ensembl_id, log2fc, padj, regulation
- Size: ~150 KB
Spatial Transcriptomics Datasets
10X Genomics Visium Spatial Gene Expression
Spatially-resolved transcriptomics from thalamocortical tissue at two developmental timepoints.
Spatial Transcriptomics - P15 (Pre-seizure)
Dataset Details
- Total DEGs: 1,079 genes
- Upregulated: 509 genes (47.2%)
- Downregulated: 570 genes (52.8%)
- Samples: 4 (GA1, GA2, WH1, WH3)
File Information
- Format: JSON
- Fields: symbol, name, ensembl_id, log2fc, adj_p_val, regulation
- Size: ~300 KB
Spatial Transcriptomics - P30 (Seizure-onset)
Dataset Details
- Total DEGs: 1,079 genes
- Upregulated: 565 genes (52.4%)
- Downregulated: 514 genes (47.6%)
- Samples: 4 (GA1, GA2, WH1, WH2)
File Information
- Format: JSON
- Fields: symbol, name, ensembl_id, log2fc, adj_p_val, regulation
- Size: ~300 KB
Spatial Transcriptomics CSV Summaries
Quick-access CSV files for top differentially expressed genes
Pre-generated CSV summary files containing the top 25 upregulated and top 25 downregulated genes by absolute log2 fold change for each spatial transcriptomics timepoint.
P15 Top DEGs
Dataset Details
- Genes: 50 (25 up, 25 down)
- Timepoint: Postnatal day 15
- Status: Pre-seizure
- Size: 4.2 KB
Columns
Symbol, Gene_Name, logFC, Average_Expression, t_Statistic, P_Value, Adjusted_P_Value, Regulation
P30 Top DEGs
Dataset Details
- Genes: 50 (25 up, 25 down)
- Timepoint: Postnatal day 30
- Status: Seizure-onset
- Size: 4.5 KB
Columns
Symbol, Gene_Name, logFC, Average_Expression, t_Statistic, P_Value, Adjusted_P_Value, Regulation
Summary Statistics
Dataset Details
- Comparisons: P15 & P30
- Metrics: DEG counts, percentages
- Purpose: Quick overview
- Size: 0.2 KB
Columns
Timepoint, Total_DEGs, Upregulated, Downregulated, Percent_Up, Percent_Down, Mean_logFC
CSV Format Notes
- Delimiter: Comma (,) - standard CSV format
- Headers: First row contains column names
- logFC: Log2 fold change (positive = upregulated, negative = downregulated)
- Regulation: "Up" or "Down" for easy filtering
- Sorted by: Absolute log2 fold change (highest to lowest)
Need the complete datasets?
These CSV files contain only the top 50 genes per timepoint. For complete datasets with all 1,079 genes:
- Download the full JSON files above (P15 & P30 sections)
- Use the Gene Search Tool to export custom filtered datasets
10X Genomics Loupe Browser Files
Interactive spatial transcriptomics analysis platform
What's Included
Download .cloupe files for advanced interactive analysis in 10X Genomics Loupe Browser desktop application:
- Full spatial transcriptome data (~20,000 genes)
- H&E tissue images with spatial coordinates
- Gene expression matrices
- Clustering and annotation data
- Interactive visualization capabilities
Requirements
- Software: 10X Genomics Loupe Browser (free download)
- OS: Windows, macOS, or Linux
- RAM: 8 GB minimum, 16 GB recommended
- Disk Space: ~1 GB for both files
P15 Pre-Seizure - Loupe Browser File
Sample Metadata
- Sample ID: ga2p15_2
- Phenotype: Pre-seizure baseline
- Timepoint: Postnatal day 15 (P15)
- Description: Before seizure onset
File Information
- Filename: GAERS_P15_PreSeizure.cloupe
- Size: 275 MB
- Platform: 10X Genomics Visium
- Spots: ~5,000 spatial barcodes
- Genes: ~20,000 detected
MD5 Checksum for file verification
75165a5804a3ccfffa72af6f1232de4f
P30 Seizure-Onset - Loupe Browser File
Sample Metadata
- Sample ID: ga1p30_2
- Phenotype: Seizure-onset
- Timepoint: Postnatal day 30 (P30)
- Description: At onset of absence seizures
File Information
- Filename: GAERS_P30_SeizureOnset.cloupe
- Size: 328 MB
- Platform: 10X Genomics Visium
- Spots: ~5,000 spatial barcodes
- Genes: ~20,000 detected
MD5 Checksum for file verification
011b9ca08f1b38f4e8bc3b9de6193f03
Getting Started
- Download Loupe Browser from 10X Genomics website (free, Windows/macOS/Linux)
- Download .cloupe files using the buttons above
- Open in Loupe Browser and start exploring spatial gene expression
- Analyze interactively: Query any gene, draw custom regions, perform differential expression
Pathway Enrichment Analysis
GO & Reactome Enrichment Results
Functional enrichment analysis of differentially expressed genes using Gene Ontology and Reactome pathways.
Dataset Details
- Total Terms: 43 enriched pathways
- Categories: Biological Process, Molecular Function, Reactome
- Criteria: p.adjust < 0.05
- Analysis: clusterProfiler
File Information
- Format: JSON
- Fields: description, gene_ratio, p_adjust, gene_count, category
- Size: ~50 KB
Gene Master Index
Comprehensive Gene Database Across All Datasets
Integrated database containing all 3,611 unique genes from bulk RNA-seq, spatial transcriptomics, and seizure gene annotations.
Database Details
- Total Genes: 3,611 unique genes
- Bulk RNA-seq: 593 genes
- Spatial P15: 1,079 genes
- Spatial P30: 1,079 genes
- Seizure Genes: 2,007 genes
File Information
- Format: JSON
- Fields: symbol, name, ensembl_id, chromosome, datasets, expression data
- Size: ~1 MB
Data Format Documentation
JSON File Structure
All JSON files follow a consistent structure for easy parsing and integration.
Differential Expression Files (DEG)
{
"genes": [
{
"symbol": "Cacna1g",
"name": "calcium voltage-gated channel subunit alpha1 G",
"ensembl_id": "ENSRNOG00000018056",
"log2fc": 1.234,
"padj": 0.001,
"regulation": "up",
"significant": true
},
...
]
}
Enrichment Analysis Files
{
"enrichment": {
"biological_process": [
{
"description": "postsynaptic density organization",
"gene_ratio": "25/560",
"p_adjust": 0.00012,
"gene_count": 25,
"genes": "Gene1/Gene2/Gene3/..."
},
...
]
}
}
Gene Master Index
{
"genes": [
{
"symbol": "Cacna1g",
"name": "calcium voltage-gated channel subunit alpha1 G",
"ensembl_id": "ENSRNOG00000018056",
"chromosome": "1",
"seizure_gene": true,
"bulk_rnaseq": {
"log2fc": 1.234,
"adj_p_val": 0.001,
"regulation": "up"
},
"spatial_p15": {
"log2fc": 0.987,
"adj_p_val": 0.005,
"regulation": "up"
},
"spatial_p30": null
},
...
]
}
Working with the Data
Python Example
import json
import pandas as pd
# Load JSON data
with open('rnaseq-degs.json') as f:
data = json.load(f)
# Convert to DataFrame
df = pd.DataFrame(data['genes'])
# Filter upregulated genes
up_genes = df[df['regulation'] == 'up']
R Example
library(jsonlite)
# Load JSON data
data <- fromJSON("rnaseq-degs.json")
# Extract genes
genes_df <- data$genes
# Filter upregulated genes
up_genes <- genes_df[genes_df$regulation == "up", ]
Custom Data Export
For customized datasets tailored to your research needs, use our interactive gene search tool.
Features:
- Search & Filter: Find genes by symbol, name, or Ensembl ID
- Advanced Filtering: Filter by regulation, p-value, fold change, datasets
- CSV Export: Download filtered results as CSV with all metadata
- Interactive: Sort, paginate, and explore data before downloading
- Export only upregulated genes with |log2FC| > 2
- Get seizure-related genes present in bulk RNA-seq
- Download genes enriched in specific GO pathways
- Create custom gene lists for pathway analysis
Data Usage & Citation
Please Cite This Resource
If you use data from gaers.bio in your research, please cite:
Özdemir, Ö. (2025). gaers.bio: Spatiotemporal Transcriptomic Analysis of Epileptogenesis in the GAERS Model. TÜBİTAK Project 122S431. Available at: https://gaers.bio
Terms of Use
- Data are freely available for academic and research purposes
- Proper attribution is required when using the data
- For commercial use, please contact the PI
- Redistribution is permitted with proper attribution